
Abstract

We propose an effective field theory modification to
General Relativity at galactic scales, governed by a
control parameter analogous to the Reynolds num-
ber in fluid dynamics. By analyzing 175 galaxies
from the SPARC database, we identify a ”Gravita-
tional Phase Transition” where the additional grav-
itational strength (parameterized as α) correlates
more strongly with the product of velocity and size
(ReG ≈ V · R) than with acceleration or poten-
tial depth alone. We identify two distinct regimes:
a ”Laminar” phase (α ≈ 0.35) appearing in dwarf
galaxies, which mimics Dark Matter, and a ”Turbu-
lent” phase (α → 0) in high-ReG systems like galaxy
clusters, recovering Newtonian behavior. We sub-
stantiate this framework with N-Body simulations
demonstrating that the Laminar phase can dynami-
cally stabilize baryon-only dwarf galaxies that would
otherwise be unbound. Crucially, the ReG scaling
naturally predicts the absence of ”missing mass” ef-
fects in galaxy clusters, resolving a longstanding ten-
sion faced by MOND-like theories.
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1 Introduction

The ”Missing Mass” problem remains one of the most
stubborn anomalies in modern physics. The consen-
sus solution, Cold Dark Matter (ΛCDM), successfully
explains large-scale structure and the CMB but faces
persistent challenges at small scales (e.g., the Cusp-
Core problem, the Too Big to Fail problem) [?]. Con-
versely, Modified Newtonian Dynamics (MOND) [?]
accurately predicts galaxy rotation curves with a sin-
gle acceleration scale a0, yet fails notably in galaxy
clusters [?] and lacks a fundamental relativistic basis.

In this work, we explore a third path: that gravity
behaves as an effective fluid exhibiting a phase transi-
tion. We introduce the Gravitational Reynolds Num-
ber (ReG), a dimensionless scalar derived from the
orbital velocity and characteristic scale of a system.
We hypothesize that spacetime ”viscosity” (modu-
larity overhead) saturates in low-ReG systems (Lam-
inar Phase), generating the extra forces typically at-
tributed to Dark Matter, but vanishes in high-ReG
systems (Turbulent Phase), recovering General Rela-
tivity.

2 Observational Motivation
(SPARC)

Scale universality is a key test for any effective the-
ory. Using the SPARC database [?], we analyzed the
rotation curves of 175 galaxies. We extracted the
parameter α, defined as the fractional boost to the
Newtonian baryonic potential required to match ob-
servations: Φtot = Φbar(1 + α).

While α shows scatter when plotted against Mass
or Velocity, we found a stronger correlation with the
quantity Vflat × Reff , which we term the Gravita-
tional Reynolds Number (ReG).

Crucially, an independent analysis of the LITTLE
THINGS dwarf galaxy dataset [?] was attempted to
verify the laminar plateau. However, extreme incon-
sistencies in the baryonic mass normalization of the
raw data (e.g., DDO 43 vs DDO 154) rendered a rig-
orous universality test inconclusive in that specific
subset. We thus rely on the mechanism test (Section
??) to valid the dynamical viability of the plateau.
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Figure 1: The Gravitational Phase Transition. Dwarf
galaxies (low V ) inhabit a high-α ”Laminar” plateau,
while giant galaxies (high V ) descend towards a low-
α ”Turbulent” regime. (Note: Data from SPARC
database).

3 The Gravitational Reynolds
Number

We define the Gravitational Reynolds Number phe-
nomenologically as:

ReG =
V ·R
νG

(1)

where νG is an effective viscosity parameter of space-
time. The phenomenology suggests a transition func-
tion of the form:

α(ReG) =
αmax

1 + (ReG/Rec)γ
(2)

where αmax ≈ 0.35 represents the saturated Laminar
phase correction, and Rec is the critical transition
scale.

4 Dynamical Mechanism Test
(N-Body)

To ensure that the observed α-plateau implies dy-
namical stability (and is not merely a curve-fitting
artifact), we performed idealized N-Body simulations
of a ”hot” dwarf galaxy.

� Initial Conditions: Baryon mass M = 1, Ra-
dius R = 1, Velocity Dispersion σ = 0.4. This
setup is unbound (Q > 1) under Newtonian
gravity.

� Control: Standard Gravity (α = 0).

� Test: ISL Laminar Gravity (α = 0.35).

Figure 2: Dynamical Stability Test. The Newto-
nian control (grey) evaporates as expected. The ISL-
modified system (red) remains bound, demonstrat-
ing that the Laminar phase effectively stabilizes high-
dispersion systems.

The simulation confirmed that the simple scalar
boost α ≈ 0.35 is sufficient to bind a system that
would otherwise evaporate (Fig 2). Robustness
checks with α ∈ [0.2, 0.6] showed that the stability
is not fine-tuned to a specific value but represents a
broad basin of attraction.

5 The Cluster Limit

A fatal flaw of acceleration-based modifications
(MOND) is that galaxy clusters often have low in-
ternal accelerations (a < a0), erroneously predicting
large ”phantom dark matter” effects where none are
observed (or forcing the re-introduction of neutrinos).
The ReG framework provides a natural resolution via
scale. Clusters have high velocities (V ∼ 1000 km/s)
and vast scales (R ∼ 1 Mpc), resulting in a massive
ReG.

As shown in Fig 3, our scaling law predicts
αcluster → 0. This implies that galaxy clusters
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Figure 3: Scale-Dependent Turn Off. Unlike MOND,
the ISL framework predicts that the modification α
vanishes for Galaxy Clusters (ReG ≫ 105), recover-
ing Newtonian behavior.

should behave in a near-Newtonian manner regarding
gravity-mass discrepancy, which aligns with observa-
tions that clusters are far less ”dark matter domi-
nated” than dwarfs once intracluster gas is accounted
for.

6 Discussion

We present this framework not as a fundamental
derivation of Quantum Gravity, but as an effective
field theory that captures the emergent behavior of
spacetime at galactic scales. The ”Viscous Space-
time” analogy provides a parsimonious explanation
for:

1. The high mass-to-light ratios of Dwarf Galaxies
(Laminar Phase).

2. The Tully-Fisher relation in Spirals (Transition
Phase).

3. The lack of extensive dark matter halos in Glob-
ular Clusters and Galaxy Clusters (Turbulent
Phase).

7 Falsification Paths

This theory is falsifiable. Specific ”kill conditions”
include:

� Dwarf Scaling: If clean, calibrated data of ex-
treme dwarfs shows a strong correlation between
α and Mass (violating the plateau), the Laminar
hypothesis is falsified.

� Cluster Lensing: If weak lensing profiles of
clusters require α > 0.1 despite high ReG, the
scale-turn-off is falsified.

� Transition Scatter: The Transition regime
(ReG ∼ Rec) should exhibit higher scatter in α
(turbulence) than the Laminar plateau. Unifor-
mity here would weigh against the fluid analogy.

8 Conclusion

The Gravitational Reynolds Number offers a unified,
scale-dependent control parameter for modified grav-
ity. By treating the ”Missing Mass” as a physical
phase transition of spacetime rather than a parti-
cle, we resolve the tension between the behavior of
dwarfs and clusters without invoking new fundamen-
tal fields.
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Reynolds number (ReG = V ·R), yielding Newtonian
recovery at cluster scales without additional tuning.
This behavior was not imposed by design but
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