Status: EXPERIMENTAL / SPECULATIVE
Objective: To find the physical source of the Digital Gravity pattern.
The Problem
We know the Output: Gravitational boost .
We do not know the Circuit: What physical mechanism counts complexity and output gravity?
Hypothesis 1: The Holographic Entropy Bound
Concept: Gravity is entropic (Verlinde). Dark Matter is just the “Entropy of the Vacuum” reacting to mass.
The Link:
* Information () scales with Area (
).
* If Area is quantized into bits, then Force is quantized.
* Why ?: The number of states for
bits is
.
* Why -2?: The Euler Characteristic () for a sphere is 2. Perhaps 2 bits are needed to define the topology of the boundary itself (Start/End markers).
.
Hypothesis 2: Quantum Error Correction (The “Code” Theory)
Concept: Spacetime is a quantum error-correcting code (AdS/CFT analogy).
The Link:
* Large systems are noisy. To preserve unitarity (information conservation), the universe MUST add redundancy.
* Parity Bits: In simple error correction (Hamming), you add bits at powers of 2.
The Syndrome: The “Dark Matter” we see is the Syndrome Measurement*—the energy cost of checking the errors.
* Prediction: Higher interaction rates (mergers) = More Errors = Higher Parity Demand = Stronger Gravity. (Matches observations: Bullet Cluster has very high ).
Hypothesis 3: The Virial Saturation
Concept: This is a phase transition in the scalar field.
The Link:
* The field can only hold integer “charges” ().
* Like electron orbitals (), gravitational halos have orbitals.
* The ” -2″ might be the ground state subtraction or binding energy.
The Research Roadmap
1. Literature Review: Hunt for “logarithmic scaling of gravity” or “discrete MOND” in existing papers.
2. Entropy Calculation: Calculate the Bekenstein-Hawking entropy for Coma vs Perseus. Does it scale with ?
3. Topology Check: Does the topology of a cluster (nodes/edges) correlate to Euler Characteristic?
4. Simulation: Can we simulate a “bit flip” in `test_clusters.py` by dynamically changing mass?
Conclusion
We are currently simulating specific “Syndromes” (Observed States).
We need to find the “Encoder”.